Pharmacothérapie personnalisée: détection de l'allèle HLA-B*5801 pour prévenir les toxidermies induites par l'allopurinol

Artak Tadevosyan, Martin Beaulieu, Caroline Albert

Département de Biochimie, CHUM-Hôpital St-Luc, Département de biochimie et médecine moléculaire, Université de Montréal, Québec, Canada

Résumé

<u>Objectif</u>: L'allopurinol, un inhibiteur purinique de la xanthine oxydase, est le traitement pharmacologique hypo-uricémiant de référence de la goutte. L'un des principaux risques associés aux prises de l'allopurinol est l'apparition de syndromes d'hypersensibilité et de réactions cutanées, en particulier de toxidermies bulleuses graves (syndrome de Stevens-Johnson ou nécrolyse épidermique toxique). Ces toxidermies graves sont associées à une mortalité d'environ 20% et corrèlent avec la présence de l'allèle HLA-B*5801. L'objectif de cette étude était de mettre au point une méthode de détection de l'allèle HLA-B*5801.

<u>Méthodes</u>: L'ADN génomique a été extrait (Kurabo) à partir du sang total. Une trousse de détection de l'allèle HLA-B*5801 (Pharmigene) a été utilisée. Deux séries de réactions contenant le contrôle interne ou les amorces spécifiques à l'allèle HLA-B*5801 ont été préparé en parallèle. Ceux-ci contenaient respectivement un contrôle positif, un contrôle négatif et les échantillons d'ADN extraits de patients volontaires ou de patients diagnostiqué avec le syndrome de Stevens-Johnson. Un PCR quantitatif (SYBR Green) suivit d'une courbe de température ont été réalisés sur un CFX96 Real-Time PCR System (BioRad).

Résultats: Une analyse de la courbe de fusion nous a permis d'observer la présence du pic (Tm) de contrôle interne à 81°C dans tous les échantillons analysés. Le pic du contrôle positif de HLA-B*5801 se trouvait à 88°C. Nous avons déterminé par quantification relative (Δ Ct = Ct Génotype – Ct Contrôle Interne) que les patients du CHUM (n=10) n'exprimaient pas l'allèle HLA-B*5801 (Δ Ct > 7). L'analyse de l'ADN génomique provenant de patients ayant un diagnostic du syndrome de Stevens-Johnson (n=6) induit par l'allopurinol, a confirmé la présence de l'allèle HLA-B*5801 chez tous ces patients (Δ Ct \leq 7).

<u>Conclusions</u>: La détection de l'allèle HLA-B*5801 par la technique de PCR en temps réel s'avère une détection sensible et spécifique. L'intégration de ce test dans le laboratoire bénéficiera grandement aux patients à risque de développer des complications potentiellement graves et permettra de personnaliser le traitement.

Introduction

Prise en charge de la goutte et de l'hyperuricémie

- L'uricémie doit être abaissée (<360umol/L) suffisamment pour améliorer durablement les signes et symptômes de la goutte.
- Les inhibiteurs de la xanthine oxydase (IXO), avec l'allopurinol ou le fébuxostat, sont recommandés comme traitement pharmacologique hypo-uricémiant de première intention de la goutte.
- Pour l'allopurinol, la posologie de début de traitement ne doit pas dépasser les 100mg/j, et encore moins dans la maladie rénale chronique modérée à sévère, puis elle doit être progressivement augmenté.
- Les effets secondaires de l'allopurinol peuvent être dévastateur (20% de mortalité).
- La société américaine de rhumatologie recommande qu'avant l'initiation de l'allopurinol, une recherche du gène HLA-B*5801 soit considérée.
- Lorsque l'allèle HLA-B*5801 est détecté, des réactions d'hypersensibilité potentiellement mortelles ont été rapportées chez des patients prenant l'allopurinol.
- Les patients peuvent présenter de la fièvre, une éosinophilie, une dysfonction hépatique et rénale ainsi qu'un rash (pouvant aller jusqu'à la nécrose épidermique toxique).
- Le risque dans la population générale de cette réaction d'hypersensibilité est entre 0,1 et 0,4 %.
- La présence de l'allèle est d'environ : 12 % chez les Coréens et 6 à 8 % chez les Chinois Han et les Thaïs.

Objectif

L'objectif de cette étude était de mettre au point une méthode de détection de l'allèle HLA-B*5801

Résultats

Figure 1. Mesure de la concentration des acides nucléiques et vérification de la qualité d'extraction par NanoDrop (patients CHUM)

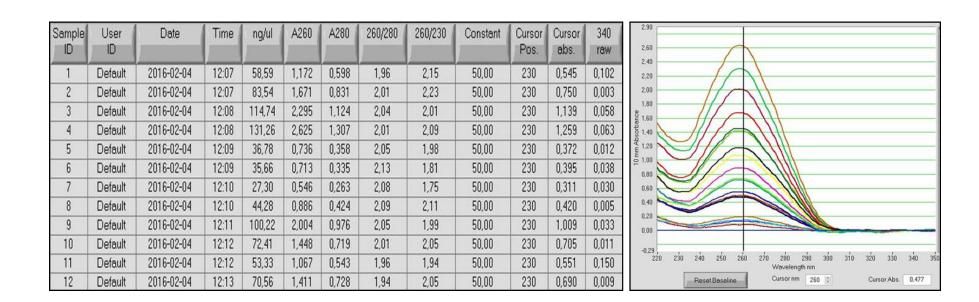


Figure 2. Paramètres et procédure sur Biorad CFX96 Real-Time PCR System

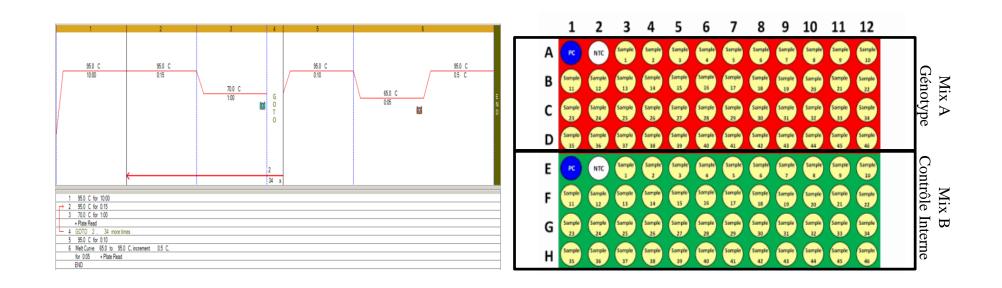


Figure 3. Détection de l'allèle HLA-B*5801 par qPCR – Patients CHUM

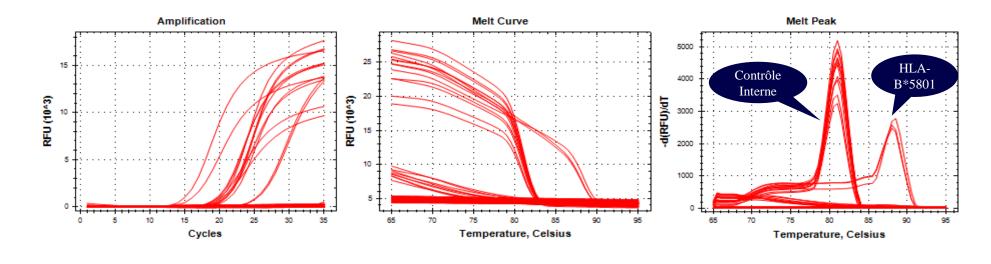
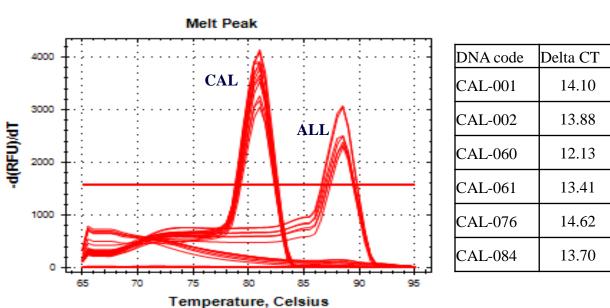


Tableau 1. Analyse et interprétation des résultats

	Ct Génotype ≤ 35	$\Delta Ct \leq 7$	HLA-B*5801 Positif		
CI Ct ≤ 27	$\Delta Ct > 7 \qquad HLA-B*5801 \text{ Négar}$	HLA-B*5801 Négatif			
	Ct Génotype >	HLA-B*5801 Négatif			
CI Ct > 27	Présence d'inhibi	teurs	Dofoino		
	Quantité d'ADN Insu	ıffisante	Refaire		


 $\Delta Ct = Ct \ G\acute{e}notype \ (Mix \ A) - Ct \ Contr\^{o}le \ Interne \ (Mix \ B)$ $CI = Ctrl \ interne$

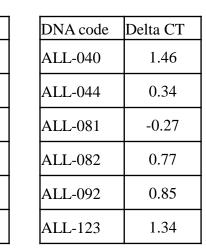

Résultats (suite)

Tableau 2. Caractéristiques des patients provenant d'une étude clinique thaïlandaise

DNA code	Diag.	HLA-B genotype	HLA-B genotype-1	HLA-B genotype-2	HLA-B*5801	Sex	Age	gDNA Conc. (ng/μl)	OD 260/280
ALL-040	SJS	4003/5801	4003	5801	Positive	М	53	23,30	1,82
ALL-044	SJS	5101/5801	5101	5801	Positive	М	65	54,80	1,83
ALL-081	SJS	3505/5801	3505	5801	Positive	F	69	92,20	1,91
ALL-082	SJS	1302/5801	1302	5801	Positive	М	71	41,00	1,78
ALL-092	SJS	0702/5801	702	5801	Positive	F	57	35,90	1,80
ALL-123	SJS	1502/5801	1502	5801	Positive	F	55	25,20	1,72
CAL-001	Tolerant control	4601/4601	4601	4601	Negative	F	71	143,60	1,85
CAL-002	Tolerant control	1301/4601	1301	4601	Negative	М	71	77,70	1,81
CAL-060	Tolerant control	4002/4601	4002	4601	Negative	М	79	101,60	1,84
CAL-061	Tolerant control	4601/0705	4601	705	Negative	М	74	139,70	1,87
CAL-076	Tolerant control	1502/3802	1502	3802	Negative	М	75	29,40	1,95
CAL-084	Tolerant control	1302/4601	1302	4601	Negative	М	46	52,20	1,87

Figure 4. Détection de l'allèle HLA-B*5801 par qPCR – Patients thaïlandais

Conclusions

La détection de l'allèle HLA-B*5801 par la technique de PCR en temps réel s'avère une détection rapide (préparation et analyse de PCR en 2h), sensible et spécifique. L'intégration de ce test dans le laboratoire bénéficiera grandement aux patients à risque de développer des complications potentiellement graves et permettra de personnaliser le traitement.

Références

Hung SI1, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, Lin YL, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4134-9.

Roberts RL, Stamp LK. Pharmacogenetic considerations in the treatment of gout. Pharmacogenomics. 2015 Apr;16(6):619-29.

Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet. 2011 Sep 9;12:118.

Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*5801

Remerciements

Santé et Services sociaux
Québec

